46,309 research outputs found

    Powerful jets from accreting black holes: evidence from the optical and infrared

    Full text link
    A common consequence of accretion onto black holes is the formation of powerful, relativistic jets that escape the system. In the case of supermassive black holes at the centres of galaxies this has been known for decades, but for stellar-mass black holes residing within galaxies like our own, it has taken recent advances to arrive at this conclusion. Here, a review is given of the evidence that supports the existence of jets from accreting stellar-mass black holes, from observations made at optical and infrared wavelengths. In particular it is found that on occasion, jets can dominate the emission of these systems at these wavelengths. In addition, the interactions between the jets and the surrounding matter produce optical and infrared emission on large scales via thermal and non-thermal processes. The evidence, implications and applications in the context of jet physics are discussed. It is shown that many properties of the jets can be constrained from these studies, including the total kinetic power they contain. The main conclusion is that like the supermassive black holes, the jet kinetic power of accreting stellar-mass black holes is sometimes comparable to their bolometric radiative luminosity. Future studies can test ubiquities in jet properties between objects, and attempt to unify the properties of jets from all observable accreting black holes, i.e. of all masses.Comment: 26 pages, 4 figures, 1 table. Invited chapter for the edited book "Black Holes and Galaxy Formation", Nova Science Publishers, Inc., at pres

    Microstructure noise, realized volatility, and optimal sampling

    Get PDF
    Recorded prices are known to diverge from their "efficient" values due to the presence of market microstructure contaminations. The microstructure noise creates a dichotomy in the model-free estimation of integrated volatility. While it is theoretically necessary to sum squared returns that are computed over very small intervals to better identify the underlying quadratic variation over a period, the summing of numerous contaminated return data entails substantial accumulation of noise. Using asymptotic arguments as in the extant theoretical literature on the subject, we argue that the realized volatility estimator diverges to infinity almost surely when noise plays a role. While realized volatility cannot be a consistent estimate of the quadratic variation of the log price process, we show that a standardized version of the realized volatility estimator can be employed to uncover the second moment of the (unobserved) noise process. More generally, we show that straightforward sample moments of the noisy return data provide consistent estimates of the moments of the noise process. Finally, we quantify the finite sample bias/variance trade-off that is induced by the accumulation of noisy observations and provide clear and easily implementable directions for optimally sampling contaminated high frequency return data for the purpose of volatility estimationMicrostructure noise, realized volatility

    Comparison of visualized turbine endwall secondary flows and measured heat transfer patterns

    Get PDF
    Various flow visualization techniques were used to define the secondary flows near the endwall in a large heat transfer data. A comparison of the visualized flow patterns and the measured Stanton number distribution was made for cases where the inlet Reynolds number and exit Mach number were matched. Flows were visualized by using neutrally buoyant helium-filled soap bubbles, by using smoke from oil soaked cigars, and by a few techniques using permanent marker pen ink dots and synthetic wintergreen oil. Details of the horseshoe vortex and secondary flows can be directly compared with heat transfer distribution. Near the cascade entrance there is an obvious correlation between the two sets of data, but well into the passage the effect of secondary flow is not as obvious

    Streakline flow visualization of discrete-hole film cooling with normal, slanted, and compound angle injection

    Get PDF
    Film injection from discrete holes in a three-row, staggered array with five-diameter spacing was studied for three hole angles: (1) normal, (2) slanted 30 deg to the surface in the direction of the main stream, and (3) slanted 30 deg to the surface and 45 deg laterally to the main stream. The ratio of the boundary layer thickness-to-hole diameter and Reynolds number were typical of gas-turbine film-cooling applications. Detailed streaklines showing the turbulent motion of the injected air were obtained by photographing very small neutrally buoyant, helium-filled soap bubbles which follow the flow field

    Flow visualization of discrete hole film cooling for gas turbine applications

    Get PDF
    Film injection from discrete holes in a three row staggered array with 5-diameter spacing is studied. The boundary layer thickness-to-hole diameter ratio and Reynolds number are typical of gas turbine film cooling applications. Two different injection locations are studied to evaluate the effect of boundary layer thickness on film penetration and mixing. Detailed streaklines showing the turbulent motion of the injected air are obtained by photographing neutrally buoyant helium filled soap bubbles which follow the flow field. The bubble streaklines passing downstream injection locations are clearly identifiable and can be traced back to their origin. Visualization of surface temperature patterns obtained from infrared photographs of a similar film cooled surface are also included

    Naming the newly found landforms on Venus

    Get PDF
    The mapping of Venus is unique in the history of cartigraphy; never has so much territory been discovered and mapped in so short a period of time. Therefore, in the interest of international scientific communication, there is a unique urgency to the development of a system of names for surface features on Venus. The process began with the naming of features seen on radar images taken from Earth and continued through mapping expeditions of the U.S. and U.S.S.R. However, the Magellan Mission resolves features twenty-five times smaller than those mapped previously, and its radar data will cover an area nearly equivalent to that of the continents and the sea-floors of the Earth combined. The International Astronomical Union (IAU) was charged with the formal endorsement of names of features on the planets. Proposed names are collected, approved, and applied through the IAU Working Group for Planetary System Nomenclature (WGPSN) and its task groups, prior to IAU approval by the IAU General Assembly. Names approved by the WGPSN and its task groups, prior to final approval may be used on published maps and articles, provided that their provisional nature is stipulated. The IAU has established themes for the names to be used on each of the planets; names of historical and mythological women are used on Venus. Names of political entities and those identified with active religions are not acceptable, and a person must have been deceased for three years or more to be considered. Any interested person may propose a name for consideration by the IAU

    Flow visualization study of the horseshoe vortex in a turbine stator cascade

    Get PDF
    Flow visualization techniques were used to show the behavior of the horseshoe vortex in a large scale turbine stator cascade. Oil drops on the end wall surface flowed in response to local shear stresses, indicating the limiting flow streamlines at the surface. Smoke injected into the flow and photographed showed time averaged flow behavior. Neutrally bouyant helium filled soap bubbles followed the flow and showed up on photographs as streaks, indicating the paths followed by individual fluid particles. Preliminary attempts to control the vortex were made by injecting air through control jets drilled in the end wall near the vane leading edge. Seventeen different hole locations were tested, one at a time, and the effect of the control jets on the path follwed by smoke in the boundary layer was recorded photographically
    corecore